Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity.

Identifieur interne : 000497 ( Main/Exploration ); précédent : 000496; suivant : 000498

The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity.

Auteurs : Carsten Berndt [Allemagne] ; Jens-Dirk Schwenn [Allemagne] ; Christopher Horst Lillig

Source :

RBID : pubmed:29861944

Abstract

Thiol-disulfide oxidoreductases from the thioredoxin (Trx) family of proteins have a broad range of well documented functions and possess distinct substrate specificities. The mechanisms and characteristics that control these specificities are key to the understanding of both the reduction of catalytic disulfides as well as allosteric disulfides (thiol switches). Here, we have used the catalytic disulfide of E. coli 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase (PR) that forms between the single active site thiols of two monomers during the reaction cycle as a model system to investigate the mechanisms of Trx and Grx protein specificity. Enzyme kinetics, ΔE'0 determination, and structural analysis of various Trx and Grx family members suggested that the redox potential does not determine specificity nor efficiency of the redoxins as reductant for PR. Instead, the efficiency of PR with various redoxins correlated strongly to the extent of a negative electric field of the redoxins reaching into the solvent outside the active site, and electrostatic and geometric complementary contact surfaces. These data suggest that, in contrast to common assumption, the composition of the active site motif is less important for substrate specificity than other amino acids in or even outside the immediate contact area.

DOI: 10.1039/c5sc01501d
PubMed: 29861944
PubMed Central: PMC5947528


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity.</title>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
<affiliation wicri:level="3">
<nlm:affiliation>From the Department of Neurology , Medical Faculty , Heinrich-Heine Universität , Merowingerplatz 1a , 40225 Düsseldorf , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>From the Department of Neurology , Medical Faculty , Heinrich-Heine Universität , Merowingerplatz 1a , 40225 Düsseldorf </wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schwenn, Jens Dirk" sort="Schwenn, Jens Dirk" uniqKey="Schwenn J" first="Jens-Dirk" last="Schwenn">Jens-Dirk Schwenn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biochemistry of Plants , Ruhr-Universität Bochum , Universitätsstraße 150 , 44780 Bochum , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Biochemistry of Plants , Ruhr-Universität Bochum , Universitätsstraße 150 , 44780 Bochum </wicri:regionArea>
<wicri:noRegion>44780 Bochum </wicri:noRegion>
<wicri:noRegion>44780 Bochum </wicri:noRegion>
<wicri:noRegion>44780 Bochum </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
<affiliation>
<nlm:affiliation>Institute for Medical Biochemistry and Molecular Biology , Universitätsmedizin Greifswald , Ernst-Moritz-Arndt Universität , Ferdinand Sauerbruch Straße , DE-17475 Greifswald , Germany . Email: horst@lillig.de ; ; Tel: +49 3834 86 5407.</nlm:affiliation>
<wicri:noCountry code="subField">Germany </wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:29861944</idno>
<idno type="pmid">29861944</idno>
<idno type="doi">10.1039/c5sc01501d</idno>
<idno type="pmc">PMC5947528</idno>
<idno type="wicri:Area/Main/Corpus">000482</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000482</idno>
<idno type="wicri:Area/Main/Curation">000482</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000482</idno>
<idno type="wicri:Area/Main/Exploration">000482</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity.</title>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
<affiliation wicri:level="3">
<nlm:affiliation>From the Department of Neurology , Medical Faculty , Heinrich-Heine Universität , Merowingerplatz 1a , 40225 Düsseldorf , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>From the Department of Neurology , Medical Faculty , Heinrich-Heine Universität , Merowingerplatz 1a , 40225 Düsseldorf </wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schwenn, Jens Dirk" sort="Schwenn, Jens Dirk" uniqKey="Schwenn J" first="Jens-Dirk" last="Schwenn">Jens-Dirk Schwenn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biochemistry of Plants , Ruhr-Universität Bochum , Universitätsstraße 150 , 44780 Bochum , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Biochemistry of Plants , Ruhr-Universität Bochum , Universitätsstraße 150 , 44780 Bochum </wicri:regionArea>
<wicri:noRegion>44780 Bochum </wicri:noRegion>
<wicri:noRegion>44780 Bochum </wicri:noRegion>
<wicri:noRegion>44780 Bochum </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
<affiliation>
<nlm:affiliation>Institute for Medical Biochemistry and Molecular Biology , Universitätsmedizin Greifswald , Ernst-Moritz-Arndt Universität , Ferdinand Sauerbruch Straße , DE-17475 Greifswald , Germany . Email: horst@lillig.de ; ; Tel: +49 3834 86 5407.</nlm:affiliation>
<wicri:noCountry code="subField">Germany </wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemical science</title>
<idno type="ISSN">2041-6520</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thiol-disulfide oxidoreductases from the thioredoxin (Trx) family of proteins have a broad range of well documented functions and possess distinct substrate specificities. The mechanisms and characteristics that control these specificities are key to the understanding of both the reduction of catalytic disulfides as well as allosteric disulfides (thiol switches). Here, we have used the catalytic disulfide of
<i>E. coli</i>
3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase (PR) that forms between the single active site thiols of two monomers during the reaction cycle as a model system to investigate the mechanisms of Trx and Grx protein specificity. Enzyme kinetics, Δ
<i>E</i>
'
<sub>0</sub>
determination, and structural analysis of various Trx and Grx family members suggested that the redox potential does not determine specificity nor efficiency of the redoxins as reductant for PR. Instead, the efficiency of PR with various redoxins correlated strongly to the extent of a negative electric field of the redoxins reaching into the solvent outside the active site, and electrostatic and geometric complementary contact surfaces. These data suggest that, in contrast to common assumption, the composition of the active site motif is less important for substrate specificity than other amino acids in or even outside the immediate contact area.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29861944</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2041-6520</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Chemical science</Title>
<ISOAbbreviation>Chem Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity.</ArticleTitle>
<Pagination>
<MedlinePgn>7049-7058</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c5sc01501d</ELocationID>
<Abstract>
<AbstractText>Thiol-disulfide oxidoreductases from the thioredoxin (Trx) family of proteins have a broad range of well documented functions and possess distinct substrate specificities. The mechanisms and characteristics that control these specificities are key to the understanding of both the reduction of catalytic disulfides as well as allosteric disulfides (thiol switches). Here, we have used the catalytic disulfide of
<i>E. coli</i>
3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase (PR) that forms between the single active site thiols of two monomers during the reaction cycle as a model system to investigate the mechanisms of Trx and Grx protein specificity. Enzyme kinetics, Δ
<i>E</i>
'
<sub>0</sub>
determination, and structural analysis of various Trx and Grx family members suggested that the redox potential does not determine specificity nor efficiency of the redoxins as reductant for PR. Instead, the efficiency of PR with various redoxins correlated strongly to the extent of a negative electric field of the redoxins reaching into the solvent outside the active site, and electrostatic and geometric complementary contact surfaces. These data suggest that, in contrast to common assumption, the composition of the active site motif is less important for substrate specificity than other amino acids in or even outside the immediate contact area.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Berndt</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Neurology , Medical Faculty , Heinrich-Heine Universität , Merowingerplatz 1a , 40225 Düsseldorf , Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schwenn</LastName>
<ForeName>Jens-Dirk</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Biochemistry of Plants , Ruhr-Universität Bochum , Universitätsstraße 150 , 44780 Bochum , Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lillig</LastName>
<ForeName>Christopher Horst</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>Institute for Medical Biochemistry and Molecular Biology , Universitätsmedizin Greifswald , Ernst-Moritz-Arndt Universität , Ferdinand Sauerbruch Straße , DE-17475 Greifswald , Germany . Email: horst@lillig.de ; ; Tel: +49 3834 86 5407.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chem Sci</MedlineTA>
<NlmUniqueID>101545951</NlmUniqueID>
<ISSNLinking>2041-6520</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29861944</ArticleId>
<ArticleId IdType="doi">10.1039/c5sc01501d</ArticleId>
<ArticleId IdType="pii">c5sc01501d</ArticleId>
<ArticleId IdType="pmc">PMC5947528</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2005 Aug;14(8):2195-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1981 Jun;146(3):1059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7016827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Apr 3;46(13):3942-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17352498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Feb 19;286(2):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Nov 1;19(13):1539-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23397885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7439-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2005 Feb 1;58(2):376-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2008 Jun;17(6):1015-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jun 20;45(24):7429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16768438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1970 May 10;245(9):2371-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4392601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 25;266(15):9494-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2033048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Mar 21;278(12):10790-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 29;278(35):33408-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12816947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Oct;239:3436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14245400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Feb 13;386(1):60-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19073194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Apr;134(1):131-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3139-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23127894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30841-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1988;150(4):313-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3060034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Mar;8(3):757-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2785919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:2958</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24389582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30780-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2003 Feb;5(1):15-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12626113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):419-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2001 Aug 15;392(2):303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11488606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 19;274(12):7695-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10075658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Biol. 2005 Aug 24;2(3):R1-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16224118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Apr;172(4):1923-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2180911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 18;272(29):18044-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9218434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1999 Jan;8(1):65-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10210184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 20;278(25):22325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 15;286(15):13430-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21345799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 21;276(38):35836-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11441020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Naturforsch C. 1987 Jan-Feb;42(1-2):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2953134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2004 May;29(1):85-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15017142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Sep 1;68(4):879-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17546662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jul 20;310(4):907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11453697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9813-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1997 Dec;18(15):2714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Aug 4;584(15):3376-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20594550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1995 Oct 1;233(1):347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7588765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Oct 20;221(4):1311-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1942053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2014 Jul 17;5:168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25100998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1970 Nov 25;245(22):6030-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4394943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1991 Feb;225(2):314-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1995 Apr;5(2):216-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7648324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):25-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 25;272(17):11236-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9111025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Düsseldorf</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Düsseldorf</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
</noCountry>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</region>
<name sortKey="Schwenn, Jens Dirk" sort="Schwenn, Jens Dirk" uniqKey="Schwenn J" first="Jens-Dirk" last="Schwenn">Jens-Dirk Schwenn</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000497 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000497 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29861944
   |texte=   The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29861944" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020